Research and Development

Research and Development2018-06-15T13:12:26+00:00

Working with surgical teams to shape the future of surgery

Our R&D efforts are focusing on a number of exciting new developments. We are actively using our content of surgical simulations and OR workflows to train artificial intelligence (AI) algorithms that can advance our capability to deliver solutions for better training and better practice beyond mobile devices. Experimenting with new visualisation, like augmented reality (AR), and our own custom device also gives us new ways of taking our digital technology and solutions to the operating room.

⏤ Dr. Dan Stoyanov, Chief Scientist at Touch Surgery

Published Studies

Study 1

Can surgical simulation be used to train detection and classification of neural networks?

Odysseas Zisimopoulos,corresponding author1 Evangello Flouty,1 Mark Stacey,1 Sam Muscroft,1 Petros Giataganas,1 Jean Nehme,1Andre Chow,1 and Danail Stoyanov1,2


Computer-assisted interventions (CAI) aim to increase the effectiveness, precision and repeatability of procedures to improve surgical outcomes. The presence and motion of surgical tools is a key information input for CAI surgical phase recognition algorithms. Vision-based tool detection and recognition approaches are an attractive solution and can be designed to take advantage of the powerful deep learning paradigm that is rapidly advancing image recognition and classification. The challenge for such algorithms is the availability and quality of labelled data used for training. In this Letter, surgical simulation is used to train tool detection and segmentation based on deep convolutional neural networks and generative adversarial networks. The authors experiment with two network architectures for image segmentation in tool classes commonly encountered during cataract surgery. A commercially-available simulator is used to create a simulated cataract dataset for training models prior to performing transfer learning on real surgical data. To the best of authors’ knowledge, this is the first attempt to train deep learning models for surgical instrument detection on simulated data while demonstrating promising results to generalise on real data. Results indicate that simulated data does have some potential for training advanced classification methods for CAI systems.

Read Full

Ready to talk?

Contact us to learn about how we can #ChangeSurgery together

Let’s Talk